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Abstract. Recent atomic computations on the (super–) heavy elements have raised the expectation that
their low–lying excitation and ionization energies can be calculated with an accuracy of a few hundredth
of an eV and, hence, that such computations might help in the identification of new lines. For most
many–electron atoms, however, the higher–order relativistic and quantum electrodynamical (QED) effects
are included so far only in a rather approximate form. Using different model computations for the neutral
and weakly ionized ytterbium (Z = 70) and nobelium atoms (Z = 102), it is shown here that QED effects
alone may lead to an uncertainty of 20–50 meV for the excitation energies of all super–heavy elements, and
that even for highly–correlated wave functions the theoretical predictions are presently not more accurate
than about 0.1 eV. Moreover, in order to support forthcoming spectroscopic measurements on the elements
beyond Z = 100, detailed computations have been carried out for the two low–lying 1S 0−1,3 P o

1 excitation
energies of nobelium by using systematically enlarged multiconfiguration Dirac–Fock wave functions.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules – 32.70.Cs Oscillator strengths,
lifetimes, transition moments

1 Introduction

Studies on the transuranium elements have attracted a
lot of interest during the last two decades, both by ex-
periment and theory. Apart from curiosity and the great
ambition of discovering new isotopes, these investigations
aimed for a better understanding of the electronic struc-
ture in strong (nuclear) fields as well as for insights into
the chemical binding in Nature. For a long time, moreover,
many experiments on the transuranium elements implied
the hope that they might help for obtaining stable islands
at the ‘heavy side’ of the nuclear chart or, at least, for
predicting the properties of yet–undiscovered isotopes.

Because of the short lifetimes of most super–heavy
isotopes (which are occasionally only of the order of
milliseconds), however, experiments in the transuranium
region are difficult and hard to perform without theoret-
ical support. In a number of earlier computations [1,2],
therefore, the aim was to predict the ground–state con-
figurations and ionization potentials for all elements up
to Z = 172 and, hence, to establish the chemical order
in the periodic table. But although these computations
certainly helped with a first chemical classification of the
(super–) heavy elements, they were by far not accurate
enough for spectroscopy, neither for predicting the level
structures of the atoms nor their excitation or decay prop-
erties. In fact, more than two further decades were needed
before atomic spectroscopy eventually arrived at Z = 100
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by using a two–step resonant ionization of the fermium
isotope 255Fm [3]. Based on detailed computations for the
low–lying resonances, and including the analysis of the ab-
sorption rates, two fermium resonances at 25099.8 cm−1

and 25111.8 cm−1 could be identified experimentally and
have raised the hope that such low–lying resonances will
be observed also for other heavy elements in the near
future.

Over the years, meanwhile, various computations
have become available which predict the ground–state
and the low–lying levels for most heavy elements with
nuclear charges up to Z = 118 and beyond. Mak-
ing use of different refinements in describing the elec-
tronic correlations and having now a rich experience
with the light and medium–range elements, the quality
of these computations has been improved considerably.
For the element E 111 (eka–gold), for example, Eliav and
coworkers [4] found that — in contrast to the lighter
group–11 elements — the ground state is formed by the
6d 97s2 2D 5/2 level (instead of the 6d 107s 2S 1/2 as for
the other coinage metals). From the comparison with the
homologous element gold, these authors then estimated
the excitation energies to an accuracy of a few hundredth
of an eV ∼ 300 cm−1 while the accuracy of the (theoret-
ical) 10.6 eV ionization potential was assigned accurate
to 0.1–0.2 eV. In all of these previous computations, how-
ever, quantum electrodynamical (QED) corrections were
neglected, at least in the calculation of the excitation ener-
gies, in line with the common experience that QED hardly
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plays a role for the optical spectra of most elements, at
least from a computational point of view. Therefore, it has
been only recently that self–energy (SE) shifts were con-
sidered separately by Labzowsky and coworkers [5,6] and
by Sapirstein and Cheng [7] for a single outer ns electron
(n ≤ 8) within a local potential approximation and were
found to reduce the electron affinity of, for instance, eka–
radon (Z = 118) by about 6 meV or, equivalently, almost
10% of the total affinity.

In this contribution, it is argued here that the (occa-
sionally supposed) accuracy of a few hundredth of an eV
for the excitation energies of the super–heavy elements
is too optimistic, in particular, if the computations are
based on the standard treatment of the Breit interaction
and QED corrections for the neutral and weakly–ionized
atoms. To this end, I will show that the uncertainties in
the (ab–initio) prediction of the low–lying excitation en-
ergies arise not only from neglected correlation contribu-
tions but also from QED shifts in the total energies of the
(super–) heavy elements. Although the theory of QED is
now being accepted as the foundation for all atomic (and
molecular) computations, there is — up to the present —
no computational procedure in sight which would be feasi-
ble to incorporate the self–energy or vacuum polarization
into the electronic structure calculations beyond, say, a
screened hydrogenic or local–potential model. This is true
especially for all (complex) atoms and ions except, per-
haps, for those with just a very few electrons such as the
helium– or lithium–like ions [8]. By comparing the level en-
ergies and shifts from various simple model computations,
it is then concluded that the ab–initio predictions on the
excitation energies, which are required for the forthcom-
ing experiments with nobelium or lawrencium, are likely
not more accurate than about 0.1 eV � 800 cm−1. A suf-
ficient realistic estimate of the theoretical accuracies is
however required in order to support the experiments on
the level structure of the super–heavy elements [9] and
to ensure a proper experimental set–up for these observa-
tions. Overall, of course, a critical test on the ‘quality of
the present–day predictions’ will become possible only if
a (large) number of levels are predicted and — later on —
confirmed or discarded by experiments [3].

To support a presently prepared experiment [9] with
atomic nobelium (Z = 102), detailed computations have
been carried out for the two lowest 1,3P1 odd–parity reso-
nances. Performing similar computations also for the ho-
mologous element ytterbium (Z = 70), our predictions
are estimated to be accurate within about 1200 cm−1,
although further core–polarization and core–core corre-
lations will be needed in the future in order to confirm
these results. In the following section, the current (com-
putational) models are first discussed in view of their ca-
pabilities and limitations in predicting the low–lying level
structure of heavy atoms. Apart from the treatment of the
electron–electron correlations, this includes in particular
the uncertainty estimates due to the higher–order rela-
tivistic and self–energy shifts on the excitation energies.
Section 3 later explains and compares the result for no-
belium and its homologous element ytterbium. Finally, a

few conclusions on the present–day accuracy of ab–initio
predictions are drawn in Section 4.

2 Computational background

Not much needs to be said here about the demands and
difficulties in carrying out atomic calculations for the
heavy and super–heavy elements. Apart from the (very)
strong relativistic and QED effects, these investigations
have often been hampered by the large number of ‘over-
lapping configurations’ which enforces one to go up to the
limits of what is computational feasible at the time. As
recently shown by Zhou and Fischer [10], for example, a
spectroscopically acceptable agreement with the observed
2D 3/2−2P o

1/2,3/2 fine structure in lutetium (Z = 71)
could be obtained only by including core–polarization and
core–core correlations to a rather huge extent. On the
other hand, however, it should be noted also that, for the
super–heavy elements Z ≥ 100, only the low–lying exci-
tations seems to be accessible by experiment in the near
future.

At present, there are two methods available which are
useful for studying the super–heavy elements. Apart from
the multi–configuration Dirac–Fock (MCDF) method, the
relativistic Coupled–Cluster (RCC) method has been
found useful to provide very accurate results. This method
allows in particular the incorporation of the Breit in-
teraction self–consistently, a computational feature which
has not been fully realized in the available MCDF codes.
So far, however, most RCC computations were restricted
to rather simple shell structures (with not more than
two electrons or holes outside of closed shells otherwise)
while, at least at the first glance, the MCDF method is
known to be more flexible with regard to the shell struc-
ture and the computation of excitation and decay rates.
Below, therefore, we make use of the MCDF method, in
which an atomic state is approximated by a superposi-
tion of configuration state functions (CSF) of the same
symmetry

ψα(PJM) =
nc∑

r=1

cr(α) |γrPJM〉 (1)

and is optimized on the basis of the (many–electron)
Dirac–Coulomb Hamiltonian [11]. Since the basic elements
of the MCDF method have been presented at various
places [12,13], here we give only a brief account of the
theory. The major difference in the computations often
concerns the number of CSF, nc, in equation (1) which
reflects the extent to which electron correlations are taken
into account. Wave function expansions (1) of several ten
or even hundred thousand CSF can nowadays be applied
with the hope of obtaining a sufficiently accurate descrip-
tion of the excitation energies and transition properties.
In Grasp92 [11], moreover, the CSF are constructed from
antisymmetrized products of a common set of orthonor-
mal orbitals, represented on some numerical mesh. Fur-
ther relativistic corrections to the electron–electron inter-
action are added later in a second step by diagonalizing
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the Dirac–Coulomb–Breit Hamiltonian matrix. A criti-
cal point is the incorporation of the QED contributions
into the level structure which, for the different models
and structure codes available, may lead to rather differ-
ent estimates. For the prediction of the low–lying reso-
nances, of course, only the differences in the QED shifts
are needed with sufficient accuracy and are ‘tested’ even-
tually by means of optical spectroscopy.

For complex atoms, so far, all the QED estimates are
known to be built on effective one–particle approximations
in which the two dominant contributions, the self–energy
(SE) of the electrons and their vacuum polarization (VP),
are treated independently. For heavy systems, both con-
tributions are comparable in their size with the (relativis-
tic) Breit interaction among the electrons and have been
investigated in detail especially for the inner–shell elec-
trons. In lowest order, the vacuum polarization can be
taken into account by means of the local Uehling poten-
tial [14] and, hence, has been incorporated into relativistic
structure calculations for many years now.

The computation of the self–energy, in contrast, re-
quires (even in lowest order in αZ) a much larger effort.
In the past, therefore, all estimates on the self–energy
shifts were based on the hydrogen–like ions, a computa-
tional scheme which was extended only recently to effec-
tive potentials as obtained from Hartree–Fock (–Slater)
computations of the ground–states [5]. But although such
a one–particle picture obviously avoids the need of intro-
ducing intermediate states for the electrons between the
emission and absorption of virtual photons in the QED
framework, it provides independent shifts for the various
electrons and, thus, does not allow the incorporation of
correlation and relaxation effects on the SE. In such an
approximation, moreover, there is no response of the wave
function included, i.e. no self–consistent evaluation of the
Lamb shift. The effects of the correlation and relaxation on
the SE can be estimated in lowest order and are expected
to be small, by analogy to the self–consistent incorpora-
tion of the Breit interaction.

In estimating the total SE shifts for the many–electron
level energies, therefore, the principal source of uncer-
tainty arises from the scaling of the one–electron SE shifts
and how these contributions are included in the compu-
tations. In practice, rather different methods have been
applied in the literature to scale up the self–energy data
from the hydrogenic computations for the multi–electron
atoms and ions. In Grasp92 [11], for instance, an effective
nuclear charge Zeff is determined from the mean radius r̄
of the various orbitals and is used for the interpolation of
the hydrogen–like results, independent of the actual shape
of the orbital functions in the presence of the other elec-
trons. The total self–energy shift is then taken as the sum
of the one–particle contributions for the K− and L−shell
electrons, and by using a n−3 scaling rule for all further
s− and p−electrons in shells with larger principal quan-
tum numbers.

An alternative method for estimating the one–particle
SE in many–electron atoms has been suggested by
Kim [15] which is based on the experience, that the dom-

inant part of the self–energy arises inside or very close
to the nucleus, say, within a sphere of 40–60 fm. In this
method, the self–energy is obtained by multiplying the
hydrogen–like SE shift for a point nucleus with the corre-
sponding charge ratio (inside such a sphere) as obtained
from the many–electron computations. For hydrogen–like
ions with a point nucleus, tabulations of the electron SE
have been listed by Mohr [16] for the 1s, 2s, and 2p or-
bitals and by Mohr and Kim [17] for ns, np, and nd (n =
3, 4, 5) orbitals. Although the use of a point nucleus (for
the calculation of the charge ratios) has the advantage that
the wave functions and, hence, the charge portion inside of
a given sphere can be computed from analytic formulas, it
represents another source of uncertainty and might be bet-
ter replaced with finite–nucleus values in the future. For
most medium and heavy atoms and ions, however, Kim’s
method was found to provide very reasonable results for
the SE estimates of the inner shells, even though not much
experience is yet available for the valence shells of heavy
systems. For large wave function expansions, in addition,
this method is fast and has been found more stable than
the determination of the SE contributions via an effective
charge.

As mentioned before, all models for estimating the SE
in many–electron atoms have been tested mainly for the
inner–shell electrons (or holes), for which the shifts in the
transition wavelength can be compared — typically at the
few–% level — with spectroscopically available X–ray data
from multiple and highly–charged ions. Until now, how-
ever, it not yet clear how these models and their estimates
can be applied to the valence shells and, in particular, to
the low–lying excitations of the neutral or weakly ion-
ized atoms. For an accurate prediction of the optical en-
ergies, namely, the SE shifts of the valence shells must
first be combined with the changes in their effective oc-
cupation numbers, including contributions from both, the
core–core and core–valence correlations. Up to the present,
therefore, the QED shifts on the valence–shell excitations
remain rather uncertain and might be used better as an
‘estimate’ of the uncertainties in the computations. In the
next section, the SE shifts of a single 7s or 7p valence–shell
electron is considered both, for the binding energies in the
No+ isoelectronic sequence and the low–lying excitation
energies of atomic nobelium.

3 Results and discussions

Missing correlations effects are usually the main source
of uncertainty in predicting the energies and excitation
cross sections for the low–lying resonances. This is true,
in particular, if an electronic excitation is associated with
a change in the total spin (i.e. for the so–called ‘spin–flip’
or intercombination transitions). For most atoms and ions,
however, these uncertainties can be controlled reason-
ably well by applying systematically enlarged MCDF or
RCC computations. For light and medium elements (with-
out open d− and f−shells), both of these methods have
been found accurate for the low–lying excitations to about
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0.05 eV � 400 cm−1 in a number of case studies. A sim-
ilar relative uncertainty of 1–3 % for the excitation ener-
gies has been obtained also for several multiple–charged
ions [13,18,19], where the absolute deviations between the
theoretical values and experiment are however larger ow-
ing to the increase of the effective charge Zeff .

Unfortunately, a rather different situation occurs for
most heavy and super–heavy atoms with open d− and
f−shells (or with such closed or empty shells nearby in
energy), for which the theoretical fine–structure splittings
may differ from experiment by 30% and more [10]. While
these deviations from experiment are often caused by
missing core–core and core–valence excitations, they also
arise due to the truncation of the virtual space. By increas-
ing the maximum orbital angular momentum from f to h,
for example, Zhou and Froese Fischer [10] found for the
2D−2P o excitations of atomic lawrencium (Z = 103) that
the g orbitals contribute significantly to the level splitting,
while the h orbitals appears to be unimportant. This be-
haviour can be understood from the fact that the g orbitals
have a direct dipole coupling to the 4f core orbitals of the
actinides, whereas the h orbitals are connected only via
higher–order interactions. Because of the increased impor-
tance of dynamic correlation for the heavy elements, how-
ever, many of the earlier (MCDF) computations are not
very realible since neither the g orbitals nor a sufficiently
large radial basis set were taken into account for the wave
functions in these studies. In estimating the uncertain-
ties of atomic computations, moreover, one should bear in
mind that the (numerical) convergence of the excitation
energies with respect to the size of the wave function ex-
pansion is certainly a necessary but by far not a sufficient
criterion. From the comparison for lutetium, for instance,
it can be seen that the theoretical 2D 3/2−2P o

1/2 excita-
tion energies differs from experiment by 300 cm−1 in the
RCC calculations [24] and by about 50 cm−1 in very exten-
sive MCDF computations [10], and that even larger devi-
ations have to be expected if nothing is known in advance
from experiment as for atomic nobelium or lawrencium.

Besides the electron–electron correlations, of course,
the QED treatment cause the next largest uncertainty
in the theoretical energies for the (super–) heavy ele-
ments. To indicate the size of the self–energy, Figure 1
displays the SE shift of a single 7s 1/2 and 7p 1/2,3/2 elec-
tron for the (alkali–like) 5f 146s26p67s 2S1/2 and
5f 146s26p67p 2P1/2,3/2 levels, respectively. In this fig-
ure, Kim’s method [15] together with the SE shifts by
Mohr and Kim [17] and the Relci program [20,21] have
been applied in order to estimate the self–energy in the
No+ isoelectronic sequence for Z = 101, ..., 112. In fact,
the increase in the SE shifts is very similar to the compu-
tations by Labzowsky and co–workers for the coinage and
alkali metals [5], who started from an effective one–particle
potential as obtained from Dirac–Fock(–Slater) wave func-
tions. For comparison, moreover, Figure 2 displays the
(analogue) 6s and 6p SE shifts for the homologous Yb+ se-
quence in the range Z = 69, ..., 80. Note the different
energy scale on this figure which confirms the empirical
rule from above, that QED effects are negligible for the
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Fig. 1. Self–energy estimates (in meV) for the 7lj valence–
shell electrons in the No+ isoelectronic sequence as obtained
for the [Rn] 5f 147l levels by using the Relci program [20];
7s 1/2 (—), 7p 1/2 (– – –), and 7p 3/2 (– · – · –).

70 72 74 76 78 80
Nuclear charge (Z)

0

20

40

60

80

Se
lf

 e
ne

rg
y 

(m
eV

)

Fig. 2. Self–energy estimates (in meV) for the 6l valence–
shell electrons in the Yb+ isoelectronic sequence. The same as
in Figure 1 but for the homologous [Xe] 4f 146l levels; 6s (—),
6p1/2 (– – –), and 6p3/2 (– · – · –).

valence–shell computations of the stable isotopes. They
are important however for the super–heavy elements with,
say,Z ≥ 100 and occur — of course — even if the presently
available codes do not support very accurate estimates
on the self–energy. The latter is seen in Figure 3 which
shows the SE of the 7s valence shell from three different
models as suggested and utilized in the literature. Apart
from Kim’s model from above [20], this figure displays the
data as obtained by the Grasp92 [11] program as well as
those due to the extrapolation formula by Klarsfeld and
Maquet [23].

Figures 1–3 display the self–energy shifts for a sin-
gle ns or np (n = 6 or 7) valence electron outside of
otherwise closed shells. For deriving the excitation en-
ergies, of course, only the differences in the total QED
shifts are relevant and must be obtained from a summa-
tion over the occupation numbers of the subshells. Apart
from the missing response of the QED effects back onto
the representation of the wave functions, hereby the main
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Fig. 3. Comparison of the 7s self–energy estimate (in meV)
from different approximations; Relci [20] (—), Klarsfeld [23]
(– – –), Grasp92 [11] (– · – · –).

uncertainty is due the one–particle model which implies
a cancellation of the core contributions to the self–energy
to better than 10 ppm. Including the Breit interaction,
the total (higher–order) ‘relativistic shifts’ on the excita-
tion energies may have different signs owing to the rel-
ative importance of the different effects for a particular
level. This is demonstrated, for instance, in Table 1 for
the higher–order relativistic and QED corrections to the
total Dirac–Coulomb energy for the 7 lowest levels of yt-
terbium (n = 6) and nobelium (n = 7) with total angu-
lar momenta J = 0, 1, 2. For the sake of simplicity, how-
ever, only a medium–size wave function expansion has
been applied in this table, including the configurations
(n − 2)f 14ns2, (n − 2)f 14nsnp, (n − 2)f 13ns2nd, (n −
2)f 14ns(n−1)d, (n−2)f 13ns2np, (n−2)f 13ns(n−1)d 2,
and (n−2)f 13nsnp(n−1)d, respectively. To emphasize the
importance of the various corrections, here we do not list
the total shifts explicitly (which are larger by 3–5 orders
of magnitudes) but just display the ‘size’ of the various
contributions in eV.

From the viewpoint of atomic spectroscopy on the
super–heavy elements, nobelium and lawrencium are at
present the two most prominent candidates. For noblium,
in fact, a first experiment is currently prepared at the GSI
in Darmstadt in order to determine the low–lying reso-
nances between about 20 000 and 30 000 cm−1, using res-
onance ionization spectroscopy [9]. Since nobelium (and
all elements beyond) have to be produced on–line in nu-
clear collisions, however, the success of such experiments
depends vitally on the quality of the theoretical predic-
tions, from which the search for new lines starts. In addi-
tion to the excitation energies, then the absorption rates
are also of direct interest in order to support the classi-
fication of the level symmetries. In nobelium, the experi-
ments commence from the 1S0 ground state and will there-
fore allow excitations predominantly into the odd–parity
J = 1 levels, such as the two 7s7p 1,3P o

1 levels. As ex-
pected (and easily confirmed by means of the correspond-
ing 6s6p 1,3P o

1 levels of the homologous element ytter-

bium), large–scale computations are required to come to
an agreement with experiment that is at least reasonable.

Therefore, in order to provide the current prepa-
ration of the nobelium experiment with a first pre-
diction, detailed computations have been carried out
for the two 7s7p 1,3P o

1 resonances of atomic nobel-
ium, including virtual excitations within an increasing
set of valence shells. Besides rather simple calculation
with just single, double and triple excitations from the
{5f, 7s, 7p} subshells into {5f, 6d, 7s, 7p} (Model I), ex-
citation were allowed also for the 6p core orbitals and
by including singles and doubles from {5f, 6p, 7s, 7p} into
the {5f, 6p, 6d, 7s, 7p, 8s, 8p, 8d, 8f, 8g} subshells, starting
from the two 5f 146p 67s2 and 5f 146p 67s7p reference con-
figurations. As the 8l orbitals are all correlation orbitals,
the principal quantum number n = 8 has no particular
meaning and has been used simply to indicate the addi-
tional ‘layer’ of one–electron functions in the representa-
tion of the atomic states. The latter model (II) gives rise to
1536 CSF for the 1S 0 ground state and already 28035 CSF
for the 1,3P o

1 excited levels, respectively. Including all
the contributions from above, the finally obtained exci-
tation energies are displayed in Table 2 below. Similar
computations for ytterbium (with all the principal quan-
tum numbers reduced by one, such as in {4f, 5p, 6s, 6p},
but with otherwise the same size of the wave function
expansion) have shown these excitation energies to be ac-
curate within 1200 cm−1 and the 1P o

1−3P o
1 splitting even

within 700 cm−1. For ytterbium, the deviation from ta-
bles [22] mainly arise from missing correlations since, here,
the higher–order relativistic and QED shifts are still neg-
ligible [cf. Tab. 1]. Therefore, the hope is that a similar
accuracy applies also for nobelium, even though a slightly
larger uncertainty might be assumed in this case owing
to the radiative corrections as discussed above. To fur-
ther improve the computations, we presently investigate
the possibilities to enlarge the wave function expansions
in order to incorporate also triple excitations as well as
core–polarization effects, comparable with Zhou’s recent
study for lawrencium [10].

4 Conclusions

To draw attention to the present–day accuracy of the
valence–shell calculations for the heavy and super–heavy
elements, different computational models for estimating
the higher–order relativistic and QED corrections have
been analyzed. Detailed computations were performed, in
particular, for the two nsnp 1,3P o

1 resonances of nobelium
(n = 7) and its homologous element ytterbium (n = 6),
as well as along the No+ and Yb+ isoelectronic sequences.
For the low–lying excitation energies of these atoms, the
self–energy shifts are obtained by using a standard im-
plementation within the Relci program [20] for the ns
and np electrons. From the analysis of these computa-
tions, it is found that — although a number of large–
scale computations have been reported even for elements
with Z > 110 during the last decade — the accuracy of
today’s atomic calculations for the low–lying excitation
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Table 1. Relativistic and QED contributions (in meV) to the low–lying excitation energies from the (n − 2)f 14ns2 1S0

ground–state for ytterbium (n = 6) and nobelium (n = 7). These contributions are obtained by taking the difference of the
level shifts from to the various effects. The ‘size’ of the total shifts is also indicated.

Level 2S+1LJ vacuum polariz. self–energy 2nd order Breit total shift

Yb 4f146s6p 3P0 1.4 2.1 –4.2 –0.7

4f146s6p 3P1 1.4 2.1 –4.9 –1.4

4f146s6p 3P2 1.5 2.2 –6.7 –3.0

4f146s5d 3D1 1.4 2.6 –1.7 2.3

4f146s5d 3D2 1.4 2.6 –2.8 1.2

4f146s6p 1P1 1.4 2.2 –7.9 –4.3

4f146s5d 1D2 1.5 2.2 –3.3 0.4

Level shift (in eV) ∼50 ∼250 ∼400

No 5f147s7p 3P0 6.6 18.2 –13.2 11.6

5f147s7p 3P1 6.7 18.3 –15.0 10.8

5f147s7p 3P2 7.2 18.9 –20.3 5.8

5f147s6d 3D1 7.3 19.4 –10.8 15.9

5f147s6d 3D2 7.3 19.5 –13.0 13.8

5f147s7p 1P1 7.0 16.5 –23.6 –0.1

5f147s6d 1D2 7.3 17.0 –14.2 10.1

Level shift (in eV) ∼500 ∼1300 ∼1500

Table 2. Excitation energies of the two 1,3P o
1 levels of atomic

nobelium with respect to its 5f147s2 1S0 ground state. Compu-
tations have been carried out in two different models as briefly
explained in the text.

Level 2S+1LJ Excitation energy (eV)

Model I Model II

No 5f147s7p 3P1 2.34 2.60

5f147s7p 1P1 3.49 3.36

energies is likely not better than 0.1 eV or even less. A
good deal of further computational and experimental data
will be needed in order to finally arrive at the accuracy of
a few hundredth of an eV ∼ 300 cm−1 for the low–lying
resonances [4,25]. Since the higher–order relativistic and
QED corrections increase rapidly with the nuclear charge,
rather sizeable QED shifts to the optical transitions may
arise for all elements beyond Z = 100. From the viewpoint
of atomic spectroscopy, therefore, it seems more desirable
for our present understanding of the electronic structure
in strong nuclear fields if, instead in going towards heav-
ier and heavier elements for which no spectroscopic studies
will be available in the near future, reliable predictions are
made and compared with experiment for the neutral and
weakly ionized atoms with Z ≈ 100.

Depending on the shell structure of the atoms and
the particular resonance under consideration, predictions
on the excitation energies and properties are still a chal-
lenge for modern atomic theory. As discussed above, the
QED shifts to the valence–shell excitations are no longer
negligible even for closed–shell structures, such as the
7s2 1S 0 ground state of nobelium, if one aims for an ac-
curacy of the theoretical prediction of about 0.1 eV ∼
800 cm−1. In fact, these QED estimates are the main

limitations today in carrying out precise structure cal-
culations for the super–heavy elements. Since, for the
valence–shell electrons, these estimates are presently not
more accurate than about 50%, there is a clear need
for more rigorous computations of the SE contributions.
From the experience with the light and medium elements
for treating the (many–electron) interactions beyond the
Dirac Hamiltonian its unlikely that a simple scaling of the
higher–order relativistic and QED will work for the low–
lying resonances, or for their excitation or decay rates.
Up to the present, the interplay of these effects is not well
enough understood. It is anticipate, therefore, that pre-
cise measurements on the super–heavy elements will yield
new challenges and will hopefully stimulate a consistent
many–particle theory for the (super–) heavy elements.
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